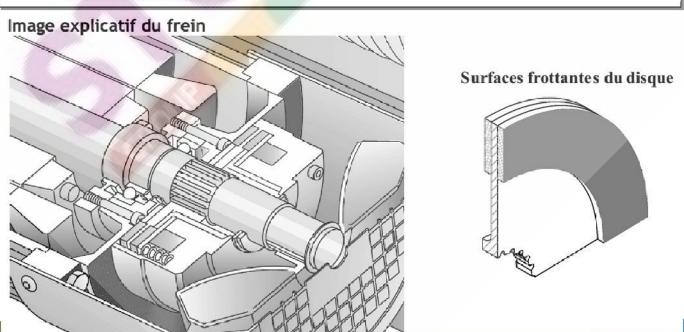

Application

Un pont roulant est équipé d'un treuil de levage. Celui-ci est équipé à son tour d'un moteur asynchrone triphasé M2 pouvant tourner dans les deux sens pour les mouvements de montée et de descente de la benne.



Le moteur du treuil du pont roulant est muni d'un frein électromagnétique à manque de courant, monté à l'arrière du moteur. Ce frein (voir dessin d'ensemble partiel) se compose de :

- Un disque de freinage 4, coulissant sur une douille cannelée 3. Celle-ci est clavetée sur l'arbre 1 du moteur.
- Le disque est équipé de garnitures de frein des deux cotés.

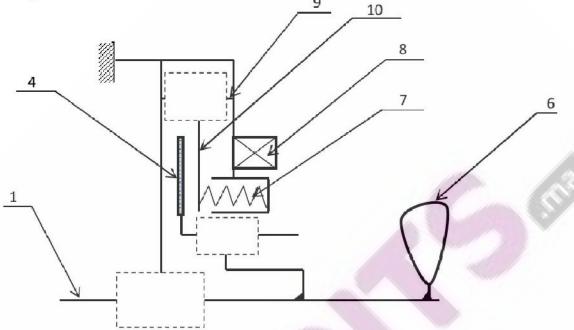
Glioula

 Un plateau fixe 5 faisant corps avec le flasque arrière du moteur et supportant trois colonnes 9 en acier traité.

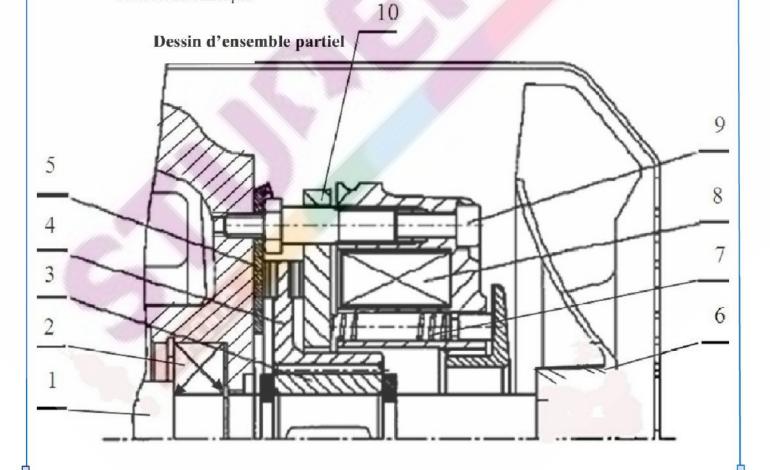
www.students.com

Afin d'assurer la fonction «libérer ou freiner la charge», l'étude portera sur la vérification des caractéristiques du moteur de levage en régime nominal, du réducteur et de la sécurité assurée par le frein qui lui est associé comme le montre le synoptique suivant : L'armature mobile 10 de l'électro-aimant coulissant sur les colonnes 9.

		Tableau des données	
Frein	Moteur M ₂	Réducteur	Tambour
R= 115 mm r= 80 mm f=0,25	Pu = 1,5 Kw N_m = 1440 tr/mn C_m = 10 Nm η_m = 0,786	Rapport du réducteur k= 1/100 η _r = 0,8	Diamètre du tambour d=0,6 m

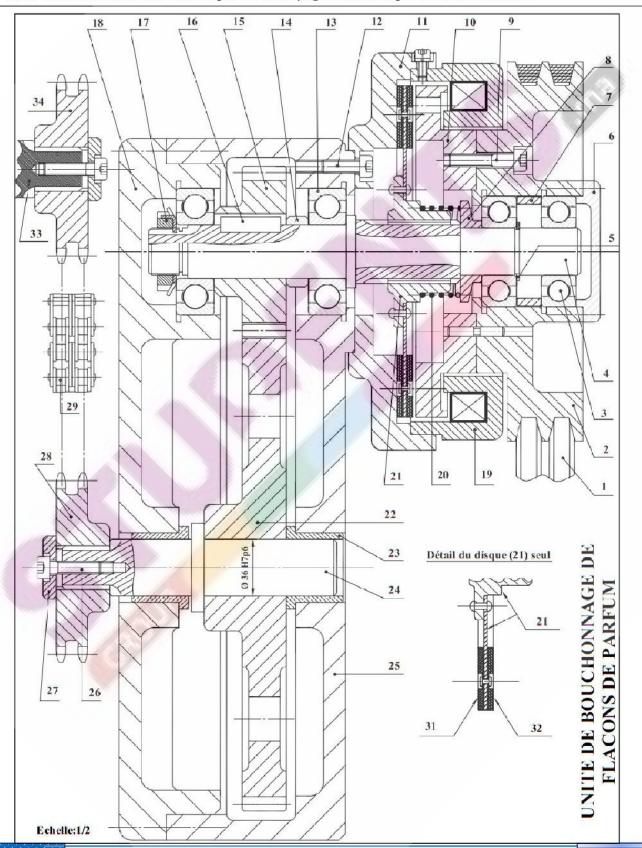

Etude de la fonction "LIBERER OU FREINER LA CHARGE"

1.1- Calculer en tr/min la vitesse de rotation Nr à la sortie du réducteur :
1.2- Déterminer la vitesse linéaire de montée de la charge Vc en m/s :
1.3- Calculer le couple Cr à la sortie du réducteur :
Tâche 2 : Etude du frein du moteur ;
2.1- Compléter le tableau suivant en se référant au dessin d'ensemble partiel :


Repère	désignation	Fonction
7		
8		

2.2- Détermi <mark>ner l'</mark> effort presseur minimal Fp mini que doit assurer le frein :

3.1- Compléter les liaisons nécessaires sur le schéma ci-dessous :


- ${\it 3.2-Compléter\ la\ liaison\ encastrement\ du\ ventilateur\ 6\ avec\ l'arbre\ 1\ en\ utilisant\ :}$
 - Une clavette parallèle ;
 - Un anneau élastique.

unité de bouchonnage de flacons :

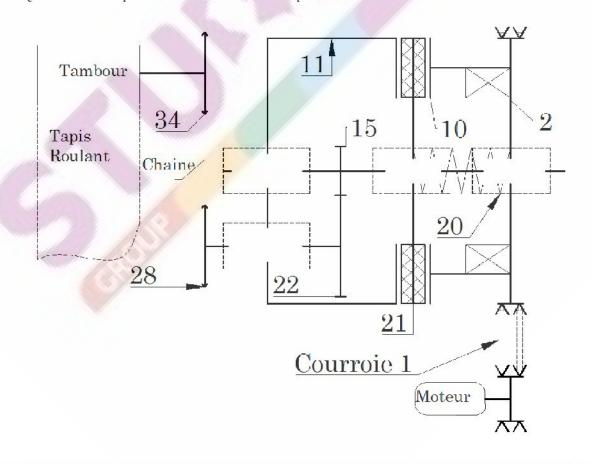
Le système à étudier fait partie d'une unité de bouchonnage de flacons de parfinn. Il permet d'entrainer un tapis roulant qui alimente l'unité en flacons vides.

La poulie 2 reçoit le mouvement de rotation du moteur par l'intermédiaire de la courroie 1 ce mouvement est transmit a l'arbre 4 par un embrayage commandé par l'électro-aimant 19

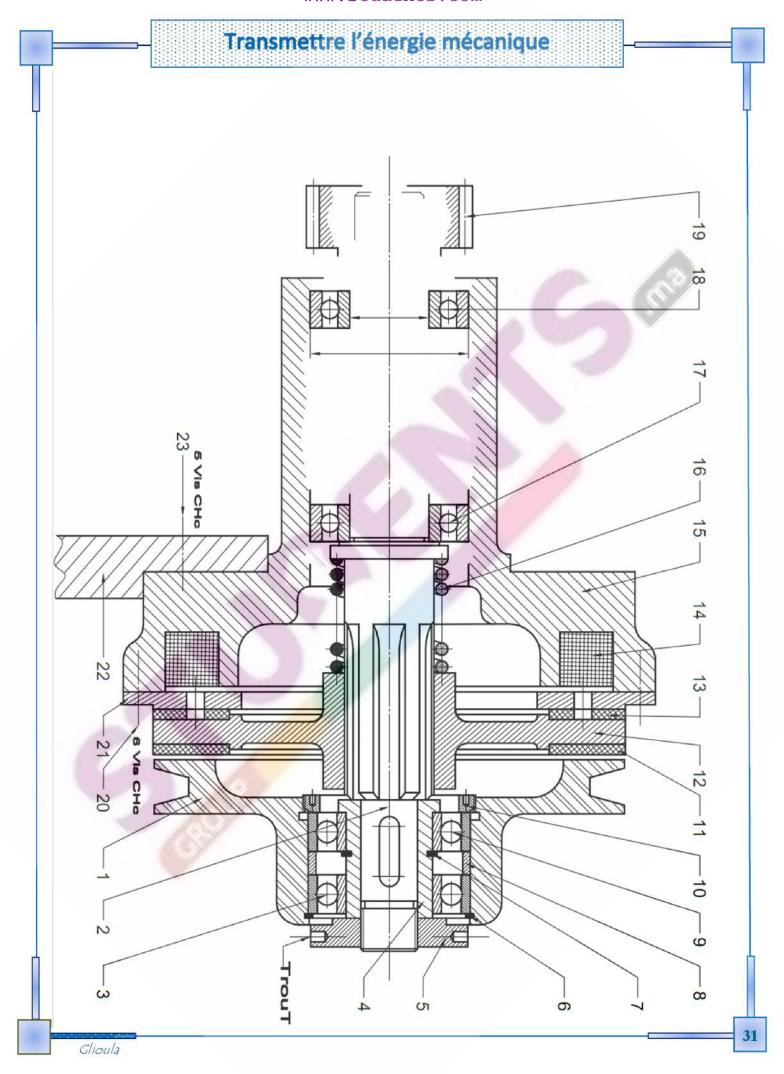
27

Glioula

Transmettre l'énergie mécanique Q-1. En se référant au dessin d'ensemble, indiquer ci-dessous le processeur assurant les fonctions techniques suivantes: Transmettre la rotation de l'arbre moteur à la poulie (2) Transmettre la rotation de la poulie (2) à l'arbre (4) Transmettre la rotation de l'arbre (4) à l'arbre (24) Transmettre la rotation de l'arbre (24) au tambour Commander l'embrayage Créer l'effort presseur pour 1'embrayage Créer l'effort presseur pour freiner Guider en rotation l'arbre 4 Guider en rotation l'arbre 24 Guider en rotation la poulie 3


www.students.com

Glioula


Q-2. Compléter le tableau des liaisons avec le symbole normalisé en deux vues :

Pièces	Liaisons	symb	oles
10/2			
2/4			
4/25			1111
24/25			
15/4			
22/24			

Q-3. Compléter le schéma cinématique suivant :

	Transmettre l'énergie mécanique ————
Sachant	t que :
	R = 260 $r = 200$ $L'effort presseur de l'électroaimant est 650 N$ $L'effort presseur du ressort est 150 N$ $Le coefficient de frottement est 0,5$
Q-4.	Donner le nom complet de cet embrayage :
Q-5.	Calculer le couple à transmettre par cet embrayage :
	Que proposer vous si en désire doubler la valeur du couple à tranmettre ?
Q-6.	Que proposer vous si en desire doubler la valeur du couple à tranmettre ?
Q-7.	Calculer le couple de freinage :

Embrayage frein

Présentation:

Un embrayage frein destiné à accoupler une poulie motrice 1 avec le pignon récepteur 19, et permettre l'arrêt en rotation immédiat de ce dernier dès le débrayage du système.

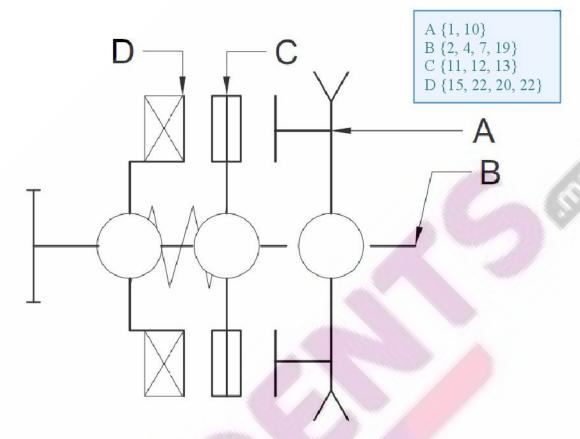
Travail demandé:

Q-1.	En se référant au dessin d'ensemble, indiquer ci	i-dessous le processeur	assurant les
foncti	ions techniques suivantes :		

Guider en rotation la poulie 1 par rapport à l'arbre 2

Commander l'embrayage

Créer l'effort presseur pour l'embrayage


Créer l'effort presseur pour le frein

Guider en rotation l'arbre 2 par rapport au bâti 16

Q-2. Compléter le tableau des liaisons avec le symbole normalisé en deux vues :

Pièces	Liaisons	symboles	
4/2	3		
1/2			
12/2			
2/16			

Q-3. Compléter le schéma cinématique suivant :

Sachant que l'effort presseur sur la surface de friction de l'embrayage est 200 daNLa surface de friction a pour rayons (r = 140 mm R = 190 mm) Le coefficient de frottement f = 0,5

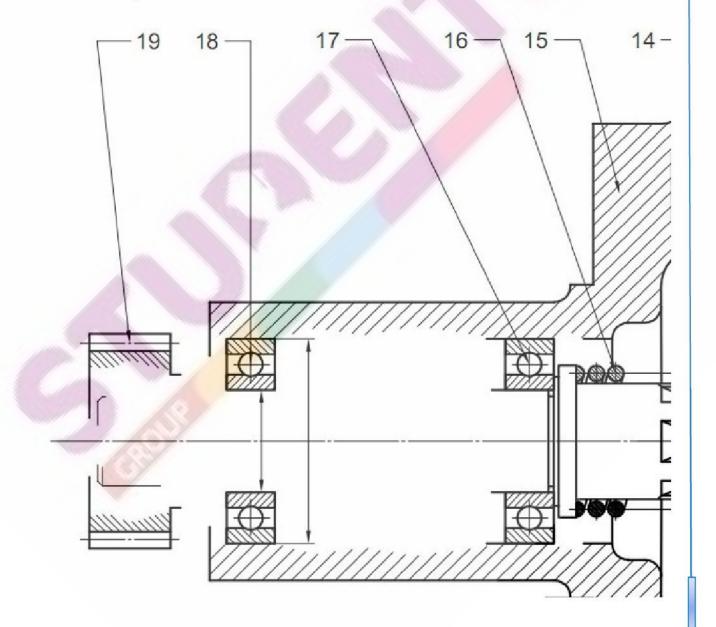
Q-4.	Indiquer sur le dessin d'ensemble les rayons (r et R) de la surface de friction d	e
l'embr	nyage	

Q-5. Calcule<mark>r le couple</mark> transmissible par cet embrayage

Q-6. Donner le nom complet de cet embrayage

Q-7. Quel est l'avantage d'un tel embrayage

Q-8. Quel est le type de frein utilisé dans ce mécanisme


Q-9. Dans quelle position est représenté l'embrayage frein (encadrer la bonne réponse)

Embrayée Freinée

Q-10. Quelle est la fonction des trous T

Q-11. Compléter le dessin par :

- Liaison complète du pignon 19 avec l'arbre 2 (Vis Chc _ Rondelle _ clavette)
- Montage des roulements 17et 18

