Exercice 1 :
La densité du fer est \(d = 7.8 \) calculer la masse d’un cube de fer d’arrête \(a = 20 \text{ cm} \).
Calculer la quantité de matière d’atomes de fer contenus dans ce cube.
La masse volumique de l’eau dans les conditions de l’expérience est
\(m_{\text{eau}} = 1000 \text{ kg.m}^{-3} \).
La masse molaire atomique du fer est \(M_{\text{Fe}} = 55.8 \text{ g/mol} \).

Correction
La densité du fer est relié aux masses volumiques du fer et de l’eau :

\[
d = \frac{\rho_{\text{fer}}}{\rho_{\text{eau}}} \Rightarrow \rho_{\text{fer}} = d \cdot \rho_{\text{eau}}
\]

\[\rho_{\text{fer}} = 7.8 \times 1000 = 7800 \text{ kg/m}^3\]

Le volume du cube est :

\[V = a^3 \Rightarrow V = (20 \text{ cm})^3 = 8000 \text{ cm}^3 = 8000 \times (10^{-2} \text{ m})^3 = 8.10^{-3} \text{ m}^3\]

La masse du cube de fer est :

\[\rho_{\text{fer}} = \frac{m}{V} \Rightarrow m = \rho_{\text{fer}} \cdot V = 7800 \times 8.10^{-3} = 62.4 \text{ kg}\]

Calculons, en mole, la quantité de matière \(n \) d’atome de fer contenus dans ce cube :

\[n = \frac{m}{M_{\text{Fe}}}\]

\[n = \frac{62400}{55.8} = 1118 \text{ mol atomes de fer}\]

Exercice 2 :

L’éthanol est un solvant. Pour déterminer sa densité, on verse 50mL d’éthanol dans une éprouvette graduée que l’on pèse sue une balance de précision : la masse mesurée est \(m = 94,3 \text{g} \). L’éprouvette vide a une masse \(m' = 5,8 \text{g} \).

1- Calculer la masse d’éthanol contenu dans l’éprouvette.

2- Calculer la densité de l’éthanol. Donnée : masse volumique d’eau : \(\rho_{\text{eau}} = 1 \text{g mL}^{-1} \).

3- On mélange 50mL d’heptane avec 20mL d’éthanol. On verse dans une ampoule à décanter. Il se forme deux phases. Commenter et schématiser l’ampoule.

Donnée : densité de l’heptane \(d = 0,68 \).

Correction

1- Calculons la masse d’éthanol contenu dans l’éprouvette :

\[
m_{\text{éthanol}} = m - m' = 94,3 - 53,8 = 40,5 \text{ g}
\]

2- La densité de l’éthanol \(d_{\text{éthanol}} \) :

\[
d_{\text{éthanol}} = \frac{m}{m'} = \frac{40,5}{50} = 0,81
\]

3- Schéma l’ampoule à décanter :

On a : \(d_{\text{hep}} < d_{\text{éthanol}} \) donc l’heptane surmonte l’éthanol.
Exercice 3 :
Détecter un volume, une masse ou une quantité de matière

Recopier et compléter le tableau suivant :

<table>
<thead>
<tr>
<th>Etat liquide</th>
<th>Acide éthanoïque</th>
<th>Benzaldéhyde</th>
<th>Alcool benzylique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formule chimique</td>
<td>$C_2H_4O_2$</td>
<td>C_7H_6O</td>
<td>C_7H_8O</td>
</tr>
<tr>
<td>Masse molaire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M (g/mol)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masse volumique</td>
<td>1,05</td>
<td>1,05</td>
<td>1,04</td>
</tr>
<tr>
<td>$\mu (g/mL)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>$V (mL)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masse</td>
<td></td>
<td>15,0</td>
<td></td>
</tr>
<tr>
<td>$m (g)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantité de matière</td>
<td>0,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n (mol)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Donnée :

$M_C = 12 \text{ g/mol}$; $M_O = 16 \text{ g/mol}$; $M_H = 1 \text{ g/mol}$

Correction

Pour l’acide éthanoïque :

Masse molaire :
\[M(C_2H_4O_2) = 2M_C + 4M_H + 2M_O = 2 \times 12 + 4 \times 1 + 2 \times 16 = 60 \, g/mol \]

Volume \(V \):

\[
\mu = \frac{m}{V} \implies V = \frac{m}{\mu} = \frac{n \cdot M}{\mu}
\]

\[
V = \frac{0,10 \times 60}{1,05} = 5,71mL
\]

Masse \(m \):

\[
m = n \cdot M = 0,10 \times 60 = 6,00g
\]

<table>
<thead>
<tr>
<th>Etat liquide</th>
<th>Acide éthanoïque</th>
<th>Benzaldéhyde</th>
<th>Alcool benzylique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formule chimique</td>
<td>(C_2H_4O_2)</td>
<td>(C_7H_6O)</td>
<td>(C_7H_8O)</td>
</tr>
<tr>
<td>Masse molaire</td>
<td>60</td>
<td>106</td>
<td>108</td>
</tr>
<tr>
<td>(M ,(g/mol))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masse volumique</td>
<td>1,05</td>
<td>1,05</td>
<td>1,04</td>
</tr>
<tr>
<td>(\mu ,(g/mL))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>5,71</td>
<td>12</td>
<td>14,4</td>
</tr>
<tr>
<td>(V ,(mL))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masse</td>
<td>6,00</td>
<td>12,6</td>
<td>15,0</td>
</tr>
<tr>
<td>(m ,(g))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantité de matière</td>
<td>0,100</td>
<td>0,12</td>
<td>0,139</td>
</tr>
<tr>
<td>(n ,(mol))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercice 4 :

Détermination des concentrations molaires

Une boisson énergétique pour les sportifs, est obtenue en dissolvant 790g de poudre dans de l’eau pour obtenir 5,0L de solution.

Sur l’étiquette on lit : 100g de poudre contiennent, 47,5mg de vitamine C et 0,95mg de vitamine B₁.

1- Calculer les masses molaires moléculaires des vitamines C (\(C_6H_8O_6\)) et B₁ (\(C_{12}H_{17}ON_4SCl\)).

2- Déterminer les quantités de matière de vitamine C et B₁ présent dans 100g puis dans 790g de poudre.

3- Déterminer les concentrations molaires de ces vitamines dans la boisson préparée.

4- Au cours d’une compétition, un athlète boit 2,4 l de cette boisson. Calculer les masses de vitamine C et B₁ absorbées.

Donnée :

<table>
<thead>
<tr>
<th>Élément</th>
<th>C</th>
<th>O</th>
<th>H</th>
<th>N</th>
<th>S</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse molaire (g/mol)</td>
<td>12</td>
<td>16</td>
<td>1</td>
<td>14</td>
<td>32</td>
<td>35,5</td>
</tr>
</tbody>
</table>

Correction

1- Masses molaires :

Masse molaire de vitamine C :

\[
M(C_6H_8O_6) = 6M(C) + 8M(H) + 6M(O) = 6 \times 12 + 8 \times 1 + 6 \times 16 = 176 \text{ g/mol}
\]

Masse molaire de vitamine B₁ :

\[
M(C_{12}H_{17}ON_4SCl) = 12M(C) + 17M(H) + M(O) + 4M(N) + M(S) + M(Cl) \\
M(C_{12}H_{17}ON_4SCl) = 12 \times 12 + 17 \times 1 + 16 + 4 \times 14 + 32 + 35,5 = 300,6 \text{ g/mol}
\]
2- Quantité de matière :

Dans 100g de poudre :

Vitamine C :

\[n(C) = \frac{m(C)}{M(C)} = \frac{47.5}{176} \Rightarrow M(C) \approx 2.7 \times 10^{-1} \text{mmol} \]

Vitamine B₁ :

\[n(B₁) = \frac{m(B₁)}{M(B₁)} = \frac{0.95}{300.6} \Rightarrow M(B₁) \approx 3.2 \times 10^{-3} \text{mmol} \]

Dans 790g de poudre :

Vitamine C :

\[n(C) = 7.9 \times 2.7 \times 10^{-1} \Rightarrow n(C) \approx 2.13 \text{mmol} \]

Vitamine B₁ :

\[n(B₁) = 7.9 \times 3.2 \times 10^{-3} \Rightarrow n(C) \approx 2.5 \times 10^{-2} \text{ mmol} \]

3- Déterminer les concentrations molaires de ces vitamines dans la boisson préparée :

Concentration de vitamine C :

\[[C] = \frac{n(C)}{V} = \frac{2.13}{5} \Rightarrow [C] = 4.26 \times 10^{-1} \text{ mmol/L} \]

Concentration de vitamine B₁ :

\[[B₁] = \frac{n(B₁)}{V} = \frac{2.5 \times 10^{-2}}{5} \Rightarrow [B₁] = 5.0 \times 10^{-3} \text{ mmol/L} \]

4- Les masses des vitamines :

Masse de vitamine C :

\[[C] = \frac{n'(C)}{V} = \frac{m'(C)}{M(C).V'} \Rightarrow m'(C) = [C].M(C).V' = 4.26 \times 10^{-1} \times 176 \times 2.4 = 180 \text{ mg} \]
Masse de vitamine B\(_1\) :

\[m'(B_1) = [B_1].M(B_1).V' = 5,0 \times 10^{-3} \times 300,6 \times 2,4 = 3,61 mg \]

Exercice 4 :

On pèse la masse de \(2,0 \times 10^{-2}\) mol d’un gaz on trouve \(m = 0,88g\). Soit ce gaz est du propane soit c’est du butane.

Formule brute du propane : \(C_3H_8\) et du butane \(C_4H_{10}\).

1- Calculer la masse molaire de chaque gaz.

2- En déduire la nature du gaz étudié.

Correction

1- Masse molaire du propane :

\[M(C_3H_8) = 3M(C) + 8M(H) = 3 \times 12 + 8 \times 1 = 44 g/mol \]

Masse molaire du butane :

\[M(C_4H_{10}) = 4M(C) + 10M(H) = 4 \times 12 + 8 \times 1 = 58 g/mol \]

2-Recherche de lasse molaire du gaz inconnu :

\[n = \frac{m}{M} \Rightarrow M = \frac{m}{n} = \frac{0,88}{2,0 \times 10^{-2}} = 44 g/mol \]

La masse molaire du gaz correspondant à celui du propane. Le gaz est donc du propane.

Exercice 5 :

L’éther éthylique de formule brute \(C_4H_{10}O\) a une masse volumique \(\rho = 0,714 kg.L^{-1}\).

On relève avec une éprouvette graduée \(V = 15 mL\) d’éther.

1- Donner la masse volumique en \(g.cm^{-3}\).

2- Calculer la masse molaire M de l’éther.
3- Calculer le nombre de mole d’éther relevé avec l’éprouvette.

Donnée :
\[M_C = 12 \, g/mol \quad ; \quad M_O = 16 \, g/mol \quad ; \quad M_H = 1 \, g/mol \]

Correction

1- masse volumique en \(g/cm^3 \) :
\[\rho = 0,714 \, kg/L = 0,714 \times 10^3 \, g/cm^3 = 0,714 \, g/cm^3 \]

2- Masse molaire :
\[M(C_4H_{10}O) = 4M_C + 10M_H + M_O = 4 \times 12 + 10 \times 1 + 16 = 74 \, g/mol^{-1} \]

3- Nombre de mole :
\[n = \frac{m}{M} = \frac{\rho \cdot V}{M} \]
\[n = \frac{0,714 \times 15}{74} = 1,4 \times 10^{-1} \, mol \]

Exercice 5 :
Une eau contient du chlorure de sodium.

1- Quelle est la formule du chlorure de sodium dans l’eau ?

2- Calculer sa masse molaire.

L’eau salée a une concentration massique massique en sel de 200 \(g/L \).

3- Quelle est la concentration molaire de chlorure de sodium dans cette eau ?

4- De combien de litres d’une telle eau faut-il disposer pour pouvoir extraire une masse de sel égale à une tonne ?

Donnée : \(M_{Na} = 23 \, g/mol^{-1} \quad ; \quad M_{Cl} = 35,5 \, g/mol^{-1} \)

Corrigé

1- Formule du chlorure de sodium :
Dans l’eau il y a présence d’ions de sodium \(Na^+ \) et d’ions de chlorure \(Cl^- \).
La formule est donc : \(Na^+ + Cl^- \).
On ne peut pas mettre \(NaCl \) car le sel est dissous et donc il n’est plus solide.

2- Masse molaire :
M(NaCl) = M_{Na} + M_{Cl} = 23,0 + 35,5 = 58,5 \text{ g.mol}^{-1}

3- Concentration molaire :

\[\begin{align*}
C &= \frac{n}{V} \\
n &= \frac{m}{M} \\
\Rightarrow C &= \frac{m}{M \cdot V}
\end{align*}\]

\[c_m = \frac{m}{V}\]

\[C = \frac{m}{V} \cdot \frac{1}{M} = \frac{c_m}{M}\]

\[C = \frac{200}{58,5} = 3,4 \text{ mol.L}^{-1}\]

4- Volume d’eau salée :

On sait que 1L contient 200g donc :

On veut avoir V L pour extraire 1 tonne = 10^3 kg = 10^6 g

Donc : \[V = \frac{10^6}{200} = 5 \cdot 10^3 L = 5m^3\]