Exercice 1
1- On fait dissoudre m = 51,3 g de sulfate d'aluminium \(\text{Al}_2(\text{SO}_4)_3\) (composé ionique) dans 500 mL d'eau.
1-1 Préciser les 3 étapes de cette solution.
1-2 Ecrire l'équation de dissolution.
1-3 Calculer la concentration de soluté apporté.
1-4 Calculer la concentration molaire volumique de chaque espèce d'ions dans la solution.

Données : Masses molaires atomiques :
\[M(\text{Al}) = 27 \text{ g/mol} \quad M(\text{S}) = 32 \text{ g/mol} \quad M(\text{O}) = 16 \text{ g/mol}\]
2- A partir de la solution précédente, on veut préparer \(V' = 100\) mL de sulfate d'aluminium de concentration \(C' = 0,15\) \text{ mol/L}.
Préciser la façon d'opérer (quelques calculs et certains appareils sont nécessaires).

Exercice 2
Le chlorure de calcium, \(\text{CaCl}_2\), et le sulfate de potassium, \(\text{K}_2\text{SO}_4\), sont des solides ioniques.
1. Préciser le nom et la formule des ions constituant ces cristaux.
2. Les solutions obtenues en dissolvant chacun de ces solides dans l'eau sont-elles électrolytiques?
3. Ecrire les équations de réactions associées aux dissolutions correspondantes.
4. Quelles sont les espèces chimiques présentes dans chacune des solutions supposées non saturées?
5. Pourquoi di-t-on que les ions présents dans la solution sont solvatisés?

Exercice 3
Le sel de Mohr est un solide de formule \(\text{FeSO}_4(\text{NH}_4)_2\text{SO}_4. 6 \text{H}_2\text{O}\). On souhaite préparer une solution \(S_0\) de sel de Mohr de volume \(V_0 = 200,0\) mL de concentration molaire apportée \(C_0 = 1,50 \times 10^{-2}\) \text{ mol/L}.
On dilue ensuite cette solution pour obtenir un volume \(V_1 = 100,0\) mL de solution \(S_1\) dans laquelle la concentration massique des ions fer II est égale à \(C_{\text{m}} = 0,209\) \text{ g/L}.
1. Calculer la masse molaire du sel de Mohr.
2. Ecrire l'équation de la dissolution dans l'eau et préciser le nom des ions.
3. Indiquer les tests chimiques permettant de mettre en évidence, dans cette solution, le cation métallique et l'anion.
4. Décrire soigneusement la préparation de la solution \(S_0\).
5. Quelles sont les concentrations molaires effectives de tous les ions présents dans la solution \(S_0\).
6. Quelle est la concentration massique des ions der II dans la solution \(S_0\)? Indiquer succinctement le mode opératoire pour obtenir la solution \(S_1\).

Exercice 4
1. Quel volume de chlorure d'hydrogène gazeux doit on dissoudre dans l'eau pour obtenir une solution d'acide chlorhydrique de concentration c = 0,020 \text{ mol/L} et de volume V = 250\text{mL}? (V_m = 24\text{L} \text{mol dans les conditions de l'expérience}.)
2. A 20° sous pression de 1,00 bar la concentration \(C_{\text{max}}\) d'une solution saturée d'acide chlorhydrique vaut 1,5 \text{mol/L}.
2-1 Quel volume de chlorure d'hydrogène gazeux doit on dissoudre pour obtenir 200,0 mL de solution saturée.
2-2 Ecrire l'équation de dissolution de l'acide sulfurique \(\text{H}_2\text{SO}_4\) dans l'eau.
3.a Quelle est la concentration c d'une solution d'acide sulfurique contenant v = 1,0 mL d'acide pur pour V = 200 mL de solution? (masse volumique de \(\text{H}_2\text{SO}_4 = 1,92\text{kg/L}\))
3.b Quelles sont les concentrations des ions en solution.

Exercice 5
On dispose de deux solutions \(S_1\) et \(S_2\) telles que :
- \(V_1 = 150\) mL de solution \(S_1\) de chlorure de cuivre(II), \(\text{Cu}^{2+}\) de concentration \(c_1 = 0,30\) \text{ mol.L}^{-1}\)
- \(V_2 = 200\) mL de solution \(S_2\) de chlorure de fer(II), \(\text{Fe}^{2+}\) de concentration \(c_2 = 0,10\) \text{ mol.L}^{-1}\)
1-Donner les formules et les noms des solides ioniques utilisés pour préparer les solutions \(S_1\) et \(S_2\).
2-Calculer les concentrations molaires des espèces ioniques présentes dans les solutions \(S_1\) et \(S_2\). Justifier.
On mélange les deux solutions aqueuses suivantes (Aucune réaction chimique n'est observée lors de ce mélange.)
3-Quel est le volume final V du mélange? Donner l'expression de la concentration effective de chaque ion présent dans le mélange, en fonction de \(c_1, V_1, c_2, V_2\).
4-Calculer chaque concentration.