Champ magnétique crée par un courant électrique

1- Champ magnétique créé par un courant continu rectiligne : (long fil rectiligne)

1- Spectre magnétique et lignes de champs magnétiques
un courant circulant dans un long fil rectiligne crée un champ magnétique dont les lignes de champ sont des cercles concentriques centrés sur le fil et situés dans le plan perpendiculaire au fil.
Pour repérer le sens des lignes de champ, on utilise la règle de la paume de la main droite.

<table>
<thead>
<tr>
<th>Spectre de champ magnétique créé par un fil infini parcouru par un courant</th>
<th>Comment déterminer le sens du champ magnétique ?</th>
</tr>
</thead>
</table>
| ![Spectre de champ magnétique](image1) | **Règle du bonhomme d’Ampère**
Lorsqu'un bonhomme d’Ampère placé sur le fil, le courant entrant par ses pieds et sortant par sa tête, regarde le point M, son bras gauche indique le sens du champ \mathbf{B} |
| ![Spectre de champ magnétique](image2) | **La règle de la main droite.**
Le courant sort du pouce de la main droite, paume vers le fil.
Les doigts donnent le sens de B, sortant des ongles. |

2- Intensité de champs magnétiques d’un courant circulant dans un long fil rectiligne
A l’absence de milieux magnétiques, En un point M de l’espace, la valeur B du champ magnétique est proportionnelle à l’intensité I du courant : $B(M) = \frac{\mu_0 I}{2\pi d}$
Avec :

- $\mu_0 = 4\pi \times 10^{-7}$ (S/m). La constante est la perméabilité magnétique du vide (ou de l’air).

Donc

$$B(M) = 2 \cdot 10^{-7} \frac{I}{d}$$

II- Champ créé par un conducteur circulaire (bobine plate) parcouru par le courant

1-Définition
Une bobine est constituée d’un enroulement de fil conducteur sur un cylindre de rayon r.
- Si la longueur de la bobine L est faible par rapport à son rayon R on a une bobine plate.

1- Spectre magnétique et lignes de champs magnétiques
Une bobine plate parcourue par un courant électrique crée un champ magnétique dont la direction est l’axe de la bobine.
Le sens du champ magnétique peut être déterminé à l’ aide de la règle de la main droite :

<table>
<thead>
<tr>
<th>Spectre de champ magnétique créé par bobine parcouru par un courant</th>
<th>Comment déterminer le sens du champ magnétique ?</th>
</tr>
</thead>
</table>
| ![Spectre de champ magnétique](image3) | **Règle du bonhomme d’Ampère**
Lorsqu’un bonhomme d’Ampère placé sur le fil, le courant entrant par ses pieds et sortant par sa tête, regarde le point M, son bras gauche indique le sens du champ \mathbf{B} |
| ![Spectre de champ magnétique](image4) | **Règle de la main droite.**
Les 4 doigts courbés de la main droite \rightarrow sens du courant à travers les spires de la bobine
Pouce : sens de B
Pouce \rightarrow sens du champ magnétique |
La valeur du vecteur champ magnétique au centre de bobine est donnée par l’expression :

\[B = \frac{\mu_0}{2} \cdot \frac{N \cdot I}{R} \]

ou \(R \) est le rayon des spires en unité m et \(I \) intensité de courant en A.

Remarque

On regarde sur l’une des faces et on examine le sens du courant : s’il correspond au sens indiqué par la lettre S on regarde sur une face Sud ; s’il correspond à celui indiqué par la lettre N on regarde sur une face Nord.

III- Champ créé par un conducteur circulaire (solenôïde) parcouru par le courant

1-Définition

Un solenôïde est constitué d’un fil conducteur enrollé régulièrement en hélice de façon à former une bobine dont la longueur est grande par rapport à son rayon.

Si \(L \) et \(R \) sont du même ordre de grandeur on a un solenôïde.

Si \(L > 10 R \) on a un solenôïde infini.

1- Spectre magnétique et lignes de champs magnétiques

Une solenôïde parcouru par un courant électrique crée un champ magnétique dont la direction est l’axe de solenôïde.

Le sens du champ magnétique peut être déterminé à l’aide de la règle de la main droite :

<table>
<thead>
<tr>
<th>Spectre de champ magnétique créé par un solenôïde parcouru par un courant</th>
<th>Comment déterminer le sens du champ magnétique ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Règle du bonhomme d’Ampère</td>
<td></td>
</tr>
<tr>
<td>Lorsqu’un bonhomme d’Ampère placé sur le fil, le courant entrant par ses pieds et sortant par sa tête, regarde le point M, son bras gauche indique le sens du champ (\vec{B})</td>
<td></td>
</tr>
<tr>
<td>Règle de la main droite</td>
<td></td>
</tr>
<tr>
<td>Les 4 doigts courbés de la main droite (\rightarrow) : sens du courant à travers les spires de la bobine Pouce : sens de (B)</td>
<td></td>
</tr>
</tbody>
</table>

Le spectre magnétique à l’extérieur du solenôïde a la même allure que celui d’un aimant droit. À l’intérieur du solenôïde et suffisamment loin des extrémités, les lignes de champ sont parallèles à l’axe du solenôïde.

3-Valeur du champ magnétique

A l’intérieur d’un solenôïde de longueur \(L \), ayant \(N \) spires, parcouru par un courant d’intensité \(I \), le champ magnétique est uniforme et a pour valeur :

\[B = \mu_0 \cdot \frac{N}{L} \cdot I \]

\(\mu_0 \) est la perméabilité du vide : \(\mu_0 = 4 \pi \times 10^{-7} \) T.m.A\(^{-1}\).

\(n = N/L \) densité de spires : avec \(L \) = longueur du solenôïde en m et \(N \) = nombre de spires

\(I \) = intensité de courant à travers le solenôïde en unité m.