المملكة المغربية

وزارة التربية الوطنية والتعليم العالي و تكوين الأطر و البحث العلمي قطاع التربية الوطنية

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2005

المدة:4ساعات المعامل: 10	الشعبة: العلوم الرياضية(أ و ب)	المادة:الرياضيات
--------------------------	-----------------------------------	------------------

التمرين الأول :

: نعتبر في \mathbb{R}^2 قانون التركيب الداخلي * المعرف بما يلي

$$(a,b)*(x,y)=\left(\frac{ax+by}{2},\frac{ay+bx}{2}\right): \mathbb{R}^2$$
 مـن (x,y) و $(a,b)*(x,y)$

$$E = \left\{ \left(m + \frac{1}{m}, m - \frac{1}{m} \right) \in \mathbb{R}^2 / m \in \mathbb{R}^* \right\}$$
: المجموعة

E بين أن * قانون داخلى في المجموعة (1

$$\left(\forall m\in\mathbb{R}^{*}\right) arphi(m) = \left(m+rac{1}{m},m-rac{1}{m}
ight)$$
 : من نحو E من نحو \mathbb{R}^{*} من نحو (2)

$$(E,st)$$
 أن (\mathbb{R}^*,st) تشاكل تقابلي من

$$\left(m+rac{1}{m},m-rac{1}{m}
ight)$$
 زمرة تبادلية محددا عنصرها المحايدومماثل كل عنصر $\left(E,st
ight)$

. حيث عدد m حقيقي غير منعدم

$$F = \{(x, y) \in \mathbb{R}^2 / x \ge 2$$
 و $y^2 = x^2 - 4 \}$ نعتبر المجموعة (3

$$F = \left\{ \left(m + \frac{1}{m}, m - \frac{1}{m} \right) \in \mathbb{R}^2 / m > 0 \right\}$$
 : زن أن بين أن (أ

$$(E,st)$$
 بين أن (F,st) زمرة جزئية من

التمرين الثاني:

الجزء الأول:

5 عدد صحیح طبیعی أولي أكبر أو يساوي من p

$$p^2 \equiv 1[3]$$
 : نين ان (1

2) أ) باستعمال زوجية العدد p ، بين أنه يوجد عدد صحيح طبيعي q بحيث

www.students.ma

$$p^2 - 1 = 4q(q+1)$$

$$p^2 \equiv 1 \ [8]$$
 : استنتج أن

$$p^2 \equiv 1 \ [24]$$
 : بين أن (3

الجزء الثانى:

. 24عدد اa عدد العدد a عدد العدد ا

$$a^2 \equiv 1$$
 [24] : نين أن (1

و
$$\{1,...,23\}$$
 و $a_k \wedge 24 = 1$: حيث a_2 حيث a_3 ،...، a_1 عن $\{24,...,23\}$ و $\{24,...,23\}$ عن $\{24,...,23\}$ هن $\{24,...,23\}$ هن $\{24,...,23\}$ هن $\{24,...,23\}$ هن $\{24,...,23\}$ هن $\{24,...,24\}$ هن المشترك الأكبر للعددين $\{24,...,23\}$ هن القاسم المشترك الأكبر للعددين $\{24,...,23\}$ هن $\{24,...,23\}$ هن القاسم المشترك الأكبر للعددين $\{24,...,23\}$ هن القاسم المشترك الأكبر العددين $\{24,...,23\}$ و القاسم المشترك الأكبر العددين $\{24,...,24\}$ و القاسم المشترك الأكبر العددين $\{24,...,24\}$ و القاسم المشترك الأكبر العددين $\{24,...,24\}$ و المشترك الأكبر العددين $\{24,...,24\}$ و المشترك المشترك الأكبر العددين $\{24,...,24\}$ و المشترك المشترك الأكبر العددين $\{24,...,24\}$ و المشترك المش

التمرين الثالث

الجزء الأول:

: يلي الحالة العددية f المعرفة على الجال $[0,+\infty[$ بما يلي

$$\begin{cases} f(x) = (x+2)e^{-\frac{2}{x}} ; x > 0 \\ f(0) = 0 \end{cases}$$

(2cm الوحدة) $\left(O,ec{i},ec{j}
ight)$ منحناها في معلم متعامد ممنظم \mathcal{C}_{f}

$$0$$
 أ) بين أن f متصلة على اليمين في (1

$$0$$
 بين أن f قابلة للإشتقاق على اليمين في $($

$$[0,+\infty[$$
 على f تزايدية قطعا على f

$$\lim_{x \to +\infty} f(x) \quad \text{lower (1)} \quad (2)$$

$$(\forall t \ge 0)$$
 $0 \le e^{-t} + t - 1 \le \frac{t^2}{2}$: نِينَ أَنِي (ب

$$(\forall x > 0)$$
 $-\frac{4}{x} \le f(x) - x \le \frac{4}{x^2} - \frac{2}{x}$: ن ان رو

. استنتج أن المنحنى \mathcal{C}_f يقبل مقاربا مائلا Δ ينبغي تحديد معادلة له.

$$\left(\Delta
ight)$$
 و المستقيم (3

الجزء الثانى

. عدد صحیح طبیعی غیر منعدم n

: يلي $[0,+\infty[$ المعرفة على الجمال يلي العددية f_n على يلي

www.students.ma

$$\begin{cases} f_n(x) = \left(x + \frac{2}{n}\right)e^{-\frac{2}{x}} ; x > 0 \\ f_n(0) = 0 \end{cases}$$

- 0 بين أن 0 قابلة للإشتقاق على اليمين في (1
- $\left[0,+\infty\right[$ ادرس تغيرات الدالة f_n على الجال (2

$$]0.+\infty[$$
 في الجمال ، المعادلة $f_n(x)=rac{2}{n}$ تقبل حلا وحيدا ، \mathbb{N}^* في الجمال (3)

$$(\forall x > 0)(\forall n \in \mathbb{N}^*) f_{n+1}(x) - \frac{2}{n+1} > f_n(x) - \frac{2}{n}$$
 : ن ن ن ن ن ن ن ن ن ن ن

. متقاربة (a_n) استنتج أن المتتالية (a_n) تناقصية ثم بين أن

 $\lim_{n\to +\infty} a_n = a$: نضع

$$\left(\forall n \in \mathbb{N}^*\right)$$
 $na_n = 2e^{\frac{2}{a_n}} - 2$: نين أن ي

a=0 و المين أن a=0

الجزء الثالث

: يلي الدالة العددية F المعرفة على الجال $[0,+\infty[$ بما يلي

$$F(x) = \int_{x}^{2x} f(t) \, dt$$

(هي الدالة المعرفة في الجزء الأول f

$$(\forall x > 0)$$
 $xf(x) \le F(x) \le xf(2x)$: نين أن (1

 $\lim_{x\to +\infty} F(x)$ ب احسب (ب

 $[0,+\infty[$ أن F قابلة للإشتقاق على الجال F (2

$$\begin{cases} F'(x) = e^{-\frac{2}{x}} \left((x+2) \left(e^{\frac{1}{x}} - 1 \right) + (3x+2) e^{\frac{1}{x}} \right) ; x > 0 \\ F_{d}'(0) = 0 \end{cases} ; x > 0$$

هو العدد المشتق للدالة F في على اليمين) $F_d'(0)$

F أعط جدول التغيرات الدالة (3)

التمرين الرابع

$$f(z) = \frac{iz-1}{\left(z+1\right)^2}$$
: نصع : حالف للعدد العدد حقدي z خالف للعدد

$$f(iy)=iy$$
 : أ) حدد العدد الحقيقي y بحيث (1

$$ig(Eig)$$
 المعادلة : المعادلة \mathbb{C}

www.students.ma

$$Re(z_1) > Re(z_2)$$
 و $Re(z_0) = 0$ حيث (E) حيث $z_1 = z_2$ و $z_1 = z_0$ حيث $z_1 + 1 = e^{i\frac{11\pi}{6}}$: (i) (2 $z_2 = z_1$ استنتج الكتابة المثلثية لكل من العددين $z_2 = z_1$ (4 $z_2 = z_1$ على أن يومذا السؤال نفترض أن $z_1 = z_1$ حيث $z_1 = z_2$ (4 $z_2 = z_1$ على الشكل $z_2 = z_1$ حيث $z_1 = z_2$ (4 $z_2 = z_1$ على الشكل $z_1 = z_2$ حيث $z_1 = z_2$ على الشكل $z_2 = z_1$ حيث $z_1 = z_2$ حيث $z_1 = z_2$ (4 $z_2 = z_1$ على الشكل $z_2 = z_1$ حيث $z_1 = z_2$ (4 $z_2 = z_1$ على الشكل $z_2 = z_1$